Microcontroller reverse engineer
Microcontroller reverse engineer
Everything they make, We can break! 
  HOME COMPANY PCB COPY MCU CRACK FAQ CONTACT US
Disassembler Software   
WHY US ?
World first mcu hack company
In business since 1998
Reversed tens of thousands of chips
Copied thousands of pcbs
Foreseen all pertential problems
Integrity with payments
crack ic
 
 
Programmable Logic Devices
  • A programmable logic device or PLD is an electronic component used to build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be programmed, that is, reconfigured.

    Before PLDs were invented, read-only memory (ROM) chips were used to create arbitrary combinational logic functions of a number of inputs. Consider a ROM with m inputs (the address lines) and n outputs (the data lines). When used as a memory, the ROM contains 2m words of n bits each.

    Now imagine that the inputs are driven not by an m-bit address, but by m independent logic signals. Theoretically, there are 22m possible Boolean functions of these m input signals. By Boolean function in this context is meant a single function that maps each of the 2m possible combinations of the m Boolean inputs to a single Boolean output. There are 22m possible distinct ways to map each of 2m inputs to a Boolean value, which explains why there are 22m such Boolean functions of m inputs.

    Now, consider that each of the n output pins acts, independently, as a logic device that is specially selected to sample just one of the possible 22m such functions. At any given time, only one of the 2m possible input values can be present on the ROM, but over time, as the input values span their full possible domain, each output pin will map out its particular function of the 2m possible input values, from among the 22m possible such functions. Note that the structure of the ROM allows just n of the 22m possible such Boolean functions to be produced at the output pins. The ROM therefore becomes equivalent to n separate logic circuits, each of which generates a chosen function of the m inputs.

    The advantage of using a ROM in this way is that any conceivable function of all possible combinations of the m inputs can be made to appear at any of the n outputs, making this the most general-purpose combinational logic device available for m input pins and n output pins.

    Also, PROMs (programmable ROMs), EPROMs (ultraviolet-erasable PROMs) and EEPROMs (electrically erasable PROMs) are available that can be programmed using a standard PROM programmer without requiring specialised hardware or software. However, there are several disadvantages:

    they are usually much slower than dedicated logic circuits,
    they cannot necessarily provide safe "covers" for asynchronous logic transitions so the PROM's outputs may glitch as the inputs switch,
    they consume more power,
    they are often more expensive than programmable logic, especially if high speed is required.
    Since most ROMs do not have input or output registers, they cannot be used stand-alone for sequential logic. An external TTL register was often used for sequential designs such as state machines. Common EPROMs, for example the 2716, are still sometimes used in this way by hobby circuit designers, who often have some lying around. This use is sometimes called a 'poor man's PAL'.

    Early programmable logic[edit source | editbeta]In 1969, Motorola offered the XC157, a mask-programmed gate array with 12 gates and 30 uncommitted input/output pins.[1]

    In 1970, Texas Instruments developed a mask-programmable IC based on the IBM read-only associative memory or ROAM. This device, the TMS2000, was programmed by altering the metal layer during the production of the IC. The TMS2000 had up to 17 inputs and 18 outputs with 8 JK flip flop for memory. TI coined the term Programmable Logic Array for this device.[2]

    In 1971, General Electric Company (GE) was developing a programmable logic device based on the new PROM technology. This experimental device improved on IBM's ROAM by allowing multilevel logic. Intel had just introduced the floating-gate UV erasable PROM so the researcher at GE incorporated that technology. The GE device was the first erasable PLD ever developed, predating the Altera EPLD by over a decade. GE obtained several early patents on programmable logic devices.[3][4][5]

    In 1973 National Semiconductor introduced a mask-programmable PLA device (DM7575) with 14 inputs and 8 outputs with no memory registers. This was more popular than the TI part but cost of making the metal mask limited its use. The device is significant because it was the basis for the field programmable logic array produced by Signetics in 1975, the 82S100. (Intersil actually beat Signetics to market but poor yield doomed their part.)[6][7]

    In 1974 GE entered into an agreement with Monolithic Memories to develop a mask- programmable logic device incorporating the GE innovations. The device was named the 'Programmable Associative Logic Array' or PALA. The MMI 5760 was completed in 1976 and could implement multilevel or sequential circuits of over 100 gates. The device was supported by a GE design environment where Boolean equations would be converted to mask patterns for configuring the device. The part was never brought to market.[8]

    PLA[edit source | editbeta]Main article: Programmable Logic Array
    In 1970, Texas Instruments developed a mask-programmable IC based on the IBM read-only associative memory or ROAM. This device, the TMS2000, was programmed by altering the metal layer during the production of the IC. The TMS2000 had up to 17 inputs and 18 outputs with 8 JK flip flop for memory. TI coined the term Programmable Logic Array for this device.[2]

    A programmable logic array (PLA) has a programmable AND gate array, which links to a programmable OR gate array, which can then be conditionally complemented to produce an output.

    PAL[edit source | editbeta]Main article: Programmable array logic
    PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-AND" plane used to implement "sum-of-products" binary logic equations for each of the outputs in terms of the inputs and either synchronous or asynchronous feedback from the outputs.

    MMI introduced a breakthrough device in 1978, the Programmable Array Logic or PAL. The architecture was simpler than that of Signetics FPLA because it omitted the programmable OR array. This made the parts faster, smaller and cheaper. They were available in 20 pin 300 mil DIP packages while the FPLAs came in 28 pin 600 mil packages. The PAL Handbook demystified the design process. The PALASM design software (PAL Assembler) converted the engineers' Boolean equations into the fuse pattern required to program the part. The PAL devices were soon second-sourced by National Semiconductor, Texas Instruments and AMD.

    After MMI succeeded with the 20-pin PAL parts, AMD introduced the 24-pin 22V10 PAL with additional features. After buying out MMI (1987), AMD spun off a consolidated operation as Vantis, and that business was acquired by Lattice Semiconductor in 1999.

    GALs[edit source | editbeta]Main article: Generic array logic

    Lattice GAL 16V8 and 20V8An innovation of the PAL was the generic array logic device, or GAL, invented by Lattice Semiconductor in 1985. This device has the same logical properties as the PAL but can be erased and reprogrammed. The GAL is very useful in the prototyping stage of a design, when any bugs in the logic can be corrected by reprogramming. GALs are programmed and reprogrammed using a PAL programmer, or by using the in-circuit programming technique on supporting chips.

    Lattice GALs combine CMOS and electrically erasable (E2) floating gate technology for a high-speed, low-power logic device.

    A similar device called a PEEL (programmable electrically erasable logic) was introduced by the International CMOS Technology (ICT) corporation.

    CPLDs[edit source | editbeta]Main article: Complex programmable logic device
    PALs and GALs are available only in small sizes, equivalent to a few hundred logic gates. For bigger logic circuits, complex PLDs or CPLDs can be used. These contain the equivalent of several PALs linked by programmable interconnections, all in one integrated circuit. CPLDs can replace thousands, or even hundreds of thousands, of logic gates.

    Some CPLDs are programmed using a PAL programmer, but this method becomes inconvenient for devices with hundreds of pins. A second method of programming is to solder the device to its printed circuit board, then feed it with a serial data stream from a personal computer. The CPLD contains a circuit that decodes the data stream and configures the CPLD to perform its specified logic function.

    FPGAs[edit source | editbeta]Main article: Field-programmable gate array
    While PALs were busy developing into GALs and CPLDs (all discussed above), a separate stream of development was happening. This type of device is based on gate array technology and is called the field-programmable gate array (FPGA). Early examples of FPGAs are the 82s100 array, and 82S105 sequencer, by Signetics, introduced in the late 1970s. The 82S100 was an array of AND terms. The 82S105 also had flip flop functions.

    FPGAs use a grid of logic gates, and once stored, the data doesn't change, similar to that of an ordinary gate array. The term "field-programmable" means the device is programmed by the customer, not the manufacturer.

    FPGAs are usually programmed after being soldered down to the circuit board, in a manner similar to that of larger CPLDs. In most larger FPGAs the configuration is volatile, and must be re-loaded into the device whenever power is applied or different functionality is required. Configuration is typically stored in a configuration PROM or EEPROM. EEPROM versions may be in-system programmable (typically via JTAG).

    The difference between FPGAs and CPLDs is that FPGAs are internally based on Look-up tables (LUTs) whereas CPLDs form the logic functions with sea-of-gates (e.g. sum of products). CPLDs are meant for simpler designs while FPGAs are meant for more complex designs. In general, CPLDs are a good choice for wide combinational logic applications, whereas FPGAs are more suitable for large state machines (i.e. microprocessors).

    Other variants[edit source | editbeta]At present, much interest exists in reconfigurable systems. These are microprocessor circuits that contain some fixed functions and other functions that can be altered by code running on the processor. Designing self-altering systems requires engineers to learn new methods, and that new software tools be developed.

    PLDs are being sold now that contain a microprocessor with a fixed function (the so-called core) surrounded by programmable logic. These devices let designers concentrate on adding new features to designs without having to worry about making the microprocessor work.

    How PLDs retain their configuration[edit source | editbeta]A PLD is a combination of a logic device and a memory device. The memory is used to store the pattern that was given to the chip during programming. Most of the methods for storing data in an integrated circuit have been adapted for use in PLDs. These include:

    Silicon antifuses
    SRAM
    EPROM or EEPROM cells
    Flash memory
    Silicon antifuses are connections that are made by applying a voltage across a modified area of silicon inside the chip. They are called antifuses because they work in the opposite way to normal fuses, which begin life as connections until they are broken by an electric current.

    SRAM, or static RAM, is a volatile type of memory, meaning that its contents are lost each time the power is switched off. SRAM-based PLDs therefore have to be programmed every time the circuit is switched on. This is usually done automatically by another part of the circuit.

    An EPROM cell is a MOS (metal-oxide-semiconductor) transistor that can be switched on by trapping an electric charge permanently on its gate electrode. This is done by a PAL programmer. The charge remains for many years and can only be removed by exposing the chip to strong ultraviolet light in a device called an EPROM eraser.

    Flash memory is non-volatile, retaining its contents even when the power is switched off. It can be erased and reprogrammed as required. This makes it useful for PLD memory.

    As of 2005, most CPLDs are electrically programmable and erasable, and non-volatile. This is because they are too small to justify the inconvenience of programming internal SRAM cells every time they start up, and EPROM cells are more expensive due to their ceramic package with a quartz window.

    PLD programming languages[edit source | editbeta]Many PAL programming devices accept input in a standard file format, commonly referred to as 'JEDEC files'.They are analogous to software compilers. The languages used as source code for logic compilers are called hardware description languages, or HDLs.

    PALASM, ABEL and CUPL are frequently used for low-complexity devices, while Verilog and VHDL are popular higher-level description languages for more complex devices. The more limited ABEL is often used for historical reasons, but for new designs VHDL is more popular, even for low-complexity designs.

    For modern PLD programming languages, design flows, and tools, see FPGA and Reconfigurable computing.

    PLD programming devices[edit source | editbeta]A device programmer is used to transfer the boolean logic pattern into the programmable device. In the early days of programmable logic, every PLD manufacturer also produced a specialized device programmer for its family of logic devices. Later, universal device programmers came onto the market that supported several logic device families from different manufacturers. Today's device programmers usually can program common PLDs (mostly PAL/GAL equivalents) from all existing manufacturers. Common file formats used to store the boolean logic pattern (fuses) are JEDEC, Altera POF (Programmable Object File), or Xilinx BITstream


  • Mikatech Lattice PLD reverse engineer list:
  • GAL series mcu program receovery: GAL16V8 GAL16V8A GAL16V8B GAL16V8C GAL16V8D GAL16V8Z GAL16LV8 ...
    GAL18V10 GAL18V10B ...
    GAL20V8A GAL20V8B GAL20V8C GAL20V8Z GAL20LV8 GAL20VP8 GAL20VP8B ...
    GAL22V10D GAL22V10C GAL22V10B GAL22V10 GAL22LV10UES GAL22VX10 GAL20XV10B GAL20XV10 GAL20RA10B GAL20RA10 ...

    PALCE series mcu program retreive: PALCE610 PALCE610H PALCE630H ...
    PALCE16V8Z PALCE16V8Q PALCE16V8H ...
    PALCE20V8Q PALCE20V8H ...
    PALCE22V10 PALCE22V10H PALCE22V10Q PALCE22V10Z PALCE20RA10Q PALCE20RA10H PALCE20RA10 ...

    LCxxx series mcu program software read: LC4032 LC4064 LC4128 LC4256 LC4384 LC4512 LC4032V LC4064V LC4128V LC4256V LC4384V LC4512V ...

    IMXXX series Microprocessor program unlock: IM4A3-64 IM4A3-32 IM4A3-96 IM4A3-128 IM4A3-256 IM4A5 IM4A5-64 IM4A5-96 IM4A5-128 IM4A5-256 IM4A5-32 ...

    ispLSI series mcu program receovery: ispLSI1016 ispLSI1024 ispLSI1032 ispLSI1048 ispLSI2064 ispLSI2096 ispLSI2128 ispLSI1016E ispLSI1024E ispLSI1032E ispLSI1048E ispLSI2064E ispLSI2096E ispLSI2128E ispLSI3160 ispLSI3192 ispLSI3256 ispLSI3256A ispLSI3256E ispLSI3320 ispLSI8840 ispLSI8600V ispLSI8840V ispLSI81080V ...

    ispLST series controller program receover: ispLST1016 ispLST1024 ispLST1032 ispLST2032 ispLST2064 ispLST4032V ispLST4064V ispLST4128 ispLST4256 ispLST4512 ...

    Mach series mcu source code program unlock: MACH110 MACH111 MACH120 MACH130 MACH131 MACH210 MACH211 MACH230 MACH436 ...

    ispMach series mcu program receovery: ispMach4032C ispMach4064C ispMach4128C ispMach4256C ispMach4384C ispMach4512C ispMach4032B ispMach4064B ispMach4128B ispMach4256B ispMach4384B ispMach4512B ispMach4032V ispMach4064V ispMach4128V...

 
 
 
     
 
PCB Copying Service
PCB Projects Overview
PCB Clone
PCB Reverse Engineering
PCB Prototype
PCB Assembly Production
 
 
Mcu Hacking Service
Atmel Microcontroller Hack
Actel Mcu Attack
Altera Microcontroller Crack
Cygnal Mcu Unlock
Cypress IC Reverse Engineer
Elan Mcu Code Extract
Fujitsu Microprocessor Decryption
Freescale IC Code Extraction
Gould integrated circuit Hack
Hitachi Mcu Code Extract
Holtek Chip Reverse Engineer
Infineon Microcontroller Dump
Intel Mcu Read Code Protection
ICT Microcontroller Duplication
Lattice Microcontroller Clone
Microchip Source Code Recovery
Motorola Microcontroller Crack
Maxim Mcu Attack
MDT Controller Hack
Magawin Microcontroller Unlock
NEC Mcu Reverse Engineer
NTK Microcontroller Code Extract
Nuvoton Chip Decryption
NXP Semiconductor Code Extraction
Philips integrated circuit Crack
Renesas Microcontroller Dump
ST Processor Reverse Engineer
Silicon Labs Mcu Read Protection
Samsung Mcu Duplication
SST Mcu Clone
Sinowealth Source Code Recovery
SyncMOS Mcu Unlock
Sonix Mcu Read Source Code
STC Microprocessor Code Extract
Tenx Microcontroller Decryption
Texas Instuments MCU Hack
Winbond MCU Code Extraction
Xilinx integrated circuit Crack
Zilog MCU Reverse Engineer
 
     
 
 
More MCU brands we can reverse engineer below, please contact us if yours not listed here:
AMD Feeling LG / Hyundai Myson STK
ChipON Hynix Mitsubishi National Semi Temic
Coreriver ICSI Mosel Vitelic Portek Toshiba
Dallas ISSI MXIC SSSC Gal / Pal / Palce
Copyright © 2013 Mikatech. All rights reserved. Full dedicated reverse engineering company